Train and validate models ensembles for image segmentation
Input Details:
- Images must have unique name or ID
- _0001.tif --> name/ID: 0001; img_5.png --> name/ID: img5, ...
- Arbitrary number of channels (e.g., 1 greyscale; 3 RGB)
- Corresponding masks must start with name or ID + a mask suffix__
- Semantic segmentation mask pixel values: background-class: 0; foreground-classes: 1,2,...,C (or 255 if binary)
- Instance segmentation mask pixel values (binary only): background-class: 0; foreground-instances: 1,2,...,I
- _0001 -> 0001_mask.png (mask_suffix = "mask.png")
- _0001 -> 0001.png (masksuffix = ".png")
- mask suffix is inferred automatically
- binary segmentations of an image, that is, there must be a single foreground value that represents positively classified pixels
- instance segmentations of an image (instances represent positively classified pixels)
Examplary input folder structure:
──images -> one image folder
│ 0001.tif
│ 0002.tif
──masks -> one masks folder
│ 0001_mask.png
│ 0002_mask.png
All common image formats (tif, png, etc.) are supported. See imageio docs.